The cell is the structural and functional unit of all known living organisms. It is the smallest unit of an organism that is classified as living, and is sometimes called the building block of life. Some organisms, such as most bacteria, are unicellular (consist of a single cell). Other organisms, such as humans, are multicellular. (Humans have an estimated 100 trillion or 1014 cells; a typical cell size is 10 µm; a typical cell mass is 1 nanogram.) The largest known cell is an ostrich egg. In 1837 before the final cell theory was developed, a Czech Jan Evangelista Purkyně observed small "granules" while looking at the plant tissue through a microscope. The cell theory, first developed in 1839 by Matthias Jakob Schleiden and Theodor Schwann, states that all organisms are composed of one or more cells. All cells come from preexisting cells. Vital functions of an organism occur within cells, and all cells contain the hereditary information necessary for regulating cell functions and for transmitting information to the next generation of cells.
The word cell comes from the Latin cellula, meaning, a small room. The descriptive name for the smallest living biological structure was chosen by Robert Hooke in a book he published in 1665 when he compared the cork cells he saw through his microscope to the small rooms monks lived in.
Preamble:
Each cell is at least somewhat self-contained and self-maintaining: it can take in nutrients, convert these nutrients into energy, carry out specialized functions, and reproduce as necessary. Each cell stores its own set of instructions for carrying out each of these activities.
Mouse cells grown in a culture dish. These cells grow in large clumps, but each individual cell is about 10 micrometres acrossAll cells have several different abilities.
Reproduction by cell division:
(binary fission/mitosis or meiosis). Use of enzymes and other proteins coded for by DNA genes and made via messenger RNA intermediates and ribosomes. Metabolism, including taking in raw materials, building cell components, converting energy, molecules and releasing by-products. The functioning of a cell depends upon its ability to extract and use chemical energy stored in organic molecules. This energy is released and then used in metabolic pathways. Response to external and internal stimuli such as changes in temperature, pH or levels of nutrients. Cell contents are contained within a cell surface membrane that is made from a lipid bilayer with proteins embedded in it. Some prokaryotic cells contain important internal membrane-bound compartments, but eukaryotic cells have a specialized set of internal membrane compartments. Material is moved between these compartments by regulated traffic and transport of small spheres of membrane-bound material called vesicles.
Prokaryotic cells:
Prokaryotes differ from eukaryotes since they lack of a nuclear membrane and a cell nucleus. Prokaryotes also lack most of the intracellular organelles and structures that are seen in eukaryotic cells. There are two kinds of prokaryotes, bacteria and archaea, but these are similar in the overall structures of their cells. Most functions of organelles, such as mitochondria, chloroplasts, and the Golgi apparatus, are taken over by the prokaryotic cell's plasma membrane. Prokaryotic cells have three architectural regions: appendages called flagella and pili — proteins attached to the cell surface; a cell envelope - consisting of a capsule, a cell wall, and a plasma membrane; and a cytoplasmic region that contains the cell genome (DNA) and ribosomes and various sorts of inclusions.
Eukaryotic cells:
Eukaryotic cells are about 10 times the size of a typical prokaryote and can be as much as 1000 times greater in volume. The major difference between prokaryotes and eukaryotes is that eukaryotic cells contain membrane-bound compartments in which specific metabolic activities take place. Most important among these is the presence of a cell nucleus, a membrane-delineated compartment that houses the eukaryotic cell's DNA. It is this nucleus that gives the eukaryote its name, which means "true nucleus".
Subcellular components:
All cells, whether prokaryotic or eukaryotic, have a membrane that envelops the cell, separates its interior from its environment, regulates what moves in and out (selectively permeable), and maintains the electric potential of the cell. Inside the membrane, a salty cytoplasm takes up most of the cell volume. All cells possess DNA, the hereditary material of genes, and RNA, containing the information necessary to build various proteins such as enzymes, the cell's primary machinery. There are also other kinds of biomolecules in cells. This article will list these primary components of the cell, then briefly describe their function.
Cell membrane:
Cytoskeleton:
A cell's scaffold:
The cytoskeleton acts to organize and maintain the cell's shape; anchors organelles in place; helps during endocytosis, the uptake of external materials by a cell, and cytokinesis, the separation of daughter cells after cell division; and moves parts of the cell in processes of growth and mobility. The eukaryotic cytoskeleton is composed of microfilaments, intermediate filaments and microtubules. There is a great number of proteins associated with them, each controlling a cell's structure by directing, bundling, and aligning filaments. The prokaryotic cytoskeleton is less well-studied but is involved in the maintenance of cell shape, polarity and cytokinesis.
Two different kinds of genetic material exist:
[DNAdeoxyribonucleic acid]] (DNA) and [[RNAribonucleic acid]] (RNA). Most organisms use DNA for their long-term information storage, but [[RNA virussome viruses]] (e.g., [[retrovirus]]es) have RNA as their genetic material. The biological information contained in an organism is [[Genetic codeencoded]] in its DNA or RNA sequence. RNA is also used for information transport (e.g., [[mRNA]]) and [[enzymeenzymatic]] functions (e.g., [[ribosomeribosomal]] RNA) in organisms that use [[DNA]] for the genetic code itself.
Prokaryotic genetic material is organized in a simple circular DNA molecule (the bacterial [[chromosome]]) in the [[nucleoid region]] of the cytoplasm. Eukaryotic genetic material is divided into different, linear molecules called [[chromosome]]s inside a discrete nucleus, usually with additional genetic material in some organelles like [[mitochondria]] and [[chloroplasts]] (see [[endosymbiotic theory]]).
A human cell has genetic material in the nucleus (the [[genomenuclear genome]]) and in the mitochondria (the [[mitochondrial genome]]). In humans the nuclear genome is divided into 46 linear DNA molecules called chromosomes. The mitochondrial genome is a circular DNA molecule separate from the nuclear DNA. Although the mitochondrial genome is very small, it codes for some important proteins.
Foreign genetic material (most commonly DNA) can also be artificially introduced into the cell by a process called [[transfection]]. This can be transient, if the DNA is not inserted into the cell's [[genome]], or stable, if it is.
Organelles:
The human body contains many different organs, such as the heart, lung, and kidney, with each organ performing a different function. Cells also have a set of "little organs," called organelles, that are adapted and/or specialized for carrying out one or more vital functions. Membrane-bound organelles are found only in eukaryotes.
Cell nucleus (a cell's information center) :
The cell nucleus is the most conspicuous organelle found in a eukaryotic cell. It houses the cell's chromosomes, and is the place where almost all DNA replication and RNA synthesis occur. The nucleus is spherical in shape and separated from the cytoplasm by a double membrane called the nuclear envelope. The nuclear envelope isolates and protects a cell's DNA from various molecules that could accidentally damage its structure or interfere with its processing. During processing, DNA is transcribed, or copied into a special RNA, called mRNA. This mRNA is then transported out of the nucleus, where it is translated into a specific protein molecule. In prokaryotes, DNA processing takes place in the cytoplasm
Mitochondria and Chloroplasts (the power generators) :
Mitochondria are self-replicating organelles that occur in various numbers, shapes, and sizes in the cytoplasm of all eukaryotic cells. As mitochondria contain their own genome that is separate and distinct from the nuclear genome of a cell, they play a critical role in generating energy in the eukaryotic cell, they give the cell energy by the process of respiration, adding oxygen to food (typicially pertaining to glucose and ATP) to release energy. Organelles that are modified chloroplasts are broadly called plastids, and are often involved in storage. Since they contain their own genome, they are thought to have once been separate organisms, which later formed a symbiotic relationship with the cells. Chloroplasts are the counter-part of the mitochondria. Instead of giving off CO2 and H2O Plants give off glucose, oxygen, 6 molecules of water (compared to 12 in respiration) this process is called photosynthesis.
Cell growth and metabolism:
Between successive cell divisions, cells grow through the functioning of cellular metabolism.
Cell metabolism is the process by which individual cells process nutrient molecules. Metabolism has two distinct divisions: catabolism, in which the cell breaks down complex molecules to produce energy and reducing power, and anabolism, in which the cell uses energy and reducing power to construct complex molecules and perform other biological functions. Complex sugars consumed by the organism can be broken down into a less chemically-complex sugar molecule called glucose. Once inside the cell, glucose is broken down to make adenosine triphosphate (ATP), a form of energy, via two different pathways.
The first pathway, glycolysis, requires no oxygen and is referred to as anaerobic metabolism. Each reaction is designed to produce some hydrogen ions that can then be used to make energy packets (ATP). In prokaryotes, glycolysis is the only method used for converting energy.
The second pathway, called the Krebs cycle, or citric acid cycle, occurs inside the mitochondria and is capable of generating enough ATP to run all the cell functions.
Protein synthesis:
Cells are capable of synthesizing new proteins, which are essential for the modulation and maintenance of cellular activities. This process involves the formation of new protein molecules from amino acid building blocks based on information encoded in DNA/RNA. Protein synthesis generally consists of two major steps: transcription and translation.
Transcription is the process where genetic information in DNA is used to produce a complementary RNA strand. This RNA strand is then processed to give messenger RNA (mRNA), which is free to migrate through the cell. mRNA molecules bind to protein-RNA complexes called ribosomes located in the cytosol, where they are translated into polypeptide sequences. The ribosome mediates the formation of a polypeptide sequence based on the mRNA sequence. The mRNA sequence directly relates to the polypeptide sequence by binding to transfer RNA (tRNA) adapter molecules in binding pockets within the ribosome. The new polypeptide then folds into a functional three-dimensional protein molecule.
Cell movement or motility:
Cell has the ability to move spontaneously during the process of wound healing, immune response and cancer metastasis. The fastest moving cells in the human body are the spermaculi, which enter and exit through the penis. This was proven when Professor Julia Ertmann of UCLA observed changes in the reproductive spermaculi in a lab environment (circa 2005). For wound healing to occur, white blood cells and cells that ingest bacteria move to the wound site to kill the microorganisms that cause infection. A the same time fibroblasts (connective tissue cells) move there to remodel damaged structures. In the case of tumor development, cells from a primary tumor move away and spread to other parts of the body. Cell motility involves many receptors, crosslinking, bundling, binding, adhesion, motor and other proteins. The process is divided into three steps - protrusion of the leading edge of the cell, adhesion of the leading edge and deadhesion at the cell body and rear, and cytoskeletal contraction to pull the cell forward. Each of these steps is driven by physical forces generated by unique segments of the cytoskeleton.
Origin of eukaryotic cells:
The eukaryotic cell seems to have evolved from a symbiotic community of prokaryotic cells. It is almost certain that DNA-bearing organelles like the mitochondria and the chloroplasts are what remains of ancient symbiotic oxygen-breathing proteobacteria and cyanobacteria, respectively, where the rest of the cell seems to be derived from an ancestral archaean prokaryote cell – a theory termed the endosymbiotic theory.
There is still considerable debate about whether organelles like the hydrogenosome predated the origin of mitochondria, or viceversa: see the hydrogen hypothesis for the origin of eukaryotic cells.
Sex, as the stereotyped choreography of meiosis and syngamy that persists in nearly all extant eukaryotes, may have played a role in the transition from prokaryotes to eukaryotes. An 'origin of sex as vaccination' theory suggests that the eukaryote genome accreted from prokaryan parasite genomes in numerous rounds of lateral gene transfer. Sex-as-syngamy (fusion sex) arose when infected hosts began swapping nuclearized genomes containing coevolved, vertically transmitted symbionts that conveyed protection against horizontal infection by more virulent symbionts.
No comments:
Post a Comment